Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell Rep ; 42(12): 113551, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38048224

RESUMO

The retrosplenial cortex (RSC) is a vital area for storing remote memory and has recently been found to undergo broad changes after peripheral nerve injury. However, little is known about the role of RSC in pain regulation. Here, we examine the involvement of RSC in the pain of mice with nerve injury. Notably, reducing the activities of calcium-/calmodulin-dependent protein kinase type II-positive splenial neurons chemogenetically increases paw withdrawal threshold and extends thermal withdrawal latency in mice with nerve injury. The single-cell or single-nucleus RNA-sequencing results predict enhanced excitatory synaptic transmissions in RSC induced by nerve injury. Local infusion of 1-naphthyl acetyl spermine into RSC to decrease the excitatory synaptic transmissions relieves pain and induces conditioned place preference. Our data indicate that RSC is critical for regulating physiological and neuropathic pain. The cell type-dependent transcriptomic information would help understand the molecular basis of neuropathic pain.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Camundongos , Animais , Giro do Cíngulo/fisiologia , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Neurônios/metabolismo , Perfilação da Expressão Gênica , Neuralgia/genética , Neuralgia/metabolismo
2.
Br J Pharmacol ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38116815

RESUMO

Contemporary strategies in cancer immunotherapy, despite remarkable success, remain constrained by inherent limitations such as suboptimal patient responses, the emergence of drug resistance, and the manifestation of pronounced adverse effects. Consequently, the need for alternative strategies for immunotherapy becomes clear. Protein tyrosine phosphatases (PTPs) wield a pivotal regulatory influence over an array of essential cellular processes. Substantial research has underscored the potential in targeting PTPs to modulate the immune responses and/or regulate antigen presentation, thereby presenting a novel paradigm for cancer immunotherapy. In this review, we focus on recent advances in genetic and biological validation of several PTPs as emerging targets for immunotherapy. We also highlight recent development of small molecule inhibitors and degraders targeting these PTPs as novel cancer immunotherapeutic agents.

3.
Chem Sci ; 14(42): 11629-11637, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37920334

RESUMO

Unlike the known aggregation-caused quenching (ACQ) that the enhancement of π-π interactions in rigid organic molecules usually decreases the luminescent emission, here we show that an intermolecular "head-to-head" π-π interaction in the phenanthrene crystal, forming the so-called "transannular effect", could result in a higher degree of electron delocalization and thus photoluminescent emission enhancement. Such a transannular effect is molecular configuration and stacking dependent, which is absent in the isomers of phenanthrene but can be realized again in the designed phenanthrene-based cocrystals. The transannular effect becomes more significant upon compression and causes anomalous piezoluminescent enhancement in the crystals. Our findings thus provide new insights into the effects of π-π interactions on luminescence emission and also offer new pathways for designing efficient aggregation-induced emission (AIE) materials to advance their applications.

4.
Chem Sci ; 14(44): 12606-12614, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020389

RESUMO

T-cell protein tyrosine phosphatase (TC-PTP), encoded by PTPN2, has emerged as a promising target for cancer immunotherapy. TC-PTP deletion in B16 melanoma cells promotes tumor cell antigen presentation, while loss of TC-PTP in T-cells enhances T-cell receptor (TCR) signaling and stimulates cell proliferation and activation. Therefore, there is keen interest in developing TC-PTP inhibitors as novel immunotherapeutic agents. Through rational design and systematic screening, we discovered the first highly potent and selective TC-PTP PROTAC degrader, TP1L, which induces degradation of TC-PTP in multiple cell lines with low nanomolar DC50s and >110-fold selectivity over the closely related PTP1B. TP1L elevates the phosphorylation level of TC-PTP substrates including pSTAT1 and pJAK1, while pJAK2, the substrate of PTP1B, is unaffected by the TC-PTP degrader. TP1L also intensifies interferon gamma (IFN-γ) signaling and increases MHC-I expression. In Jurkat cells, TP1L activates TCR signaling through increased phosphorylation of LCK. Furthermore, in a CAR-T cell and KB tumor cell co-culture model, TP1L enhances CAR-T cell mediated tumor killing efficacy through activation of the CAR-T cells. Thus, we surmise that TP1L not only provides a unique opportunity for in-depth interrogation of TC-PTP biology but also serves as an excellent starting point for the development of novel immunotherapeutic agents targeting TC-PTP.

5.
Nat Commun ; 14(1): 7860, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030640

RESUMO

As an advanced amorphous material, sp3 amorphous carbon exhibits exceptional mechanical, thermal and optical properties, but it cannot be synthesized by using traditional processes such as fast cooling liquid carbon and an efficient strategy to tune its structure and properties is thus lacking. Here we show that the structures and physical properties of sp3 amorphous carbon can be modified by changing the concentration of carbon pentagons and hexagons in the fullerene precursor from the topological transition point of view. A highly transparent, nearly pure sp3-hybridized bulk amorphous carbon, which inherits more hexagonal-diamond structural feature, was synthesized from C70 at high pressure and high temperature. This amorphous carbon shows more hexagonal-diamond-like clusters, stronger short/medium-range structural order, and significantly enhanced thermal conductivity (36.3 ± 2.2 W m-1 K-1) and higher hardness (109.8 ± 5.6 GPa) compared to that synthesized from C60. Our work thus provides a valid strategy to modify the microstructure of amorphous solids for desirable properties.

6.
Alzheimers Dement (N Y) ; 9(4): e12429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023622

RESUMO

INTRODUCTION: The risk of developing Alzheimer's disease is associated with genes involved in microglial function. Inositol polyphosphate-5-phosphatase (INPP5D), which encodes Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1), is a risk gene expressed in microglia. Because SHIP1 binds receptor immunoreceptor tyrosine-based inhibitory motifs (ITIMs), competes with kinases, and converts PI(3,4,5)P3 to PI(3,4)P2, it is a negative regulator of microglia function. Validated inhibitors are needed to evaluate SHIP1 as a potential therapeutic target. METHODS: We identified inhibitors and screened the enzymatic domain of SHIP1. A protein construct containing two domains was used to evaluate enzyme inhibitor potency and selectivity versus SHIP2. Inhibitors were tested against a construct containing all ordered domains of the human and mouse proteins. A cellular thermal shift assay (CETSA) provided evidence of target engagement in cells. Phospho-AKT levels provided further evidence of on-target pharmacology. A high-content imaging assay was used to study the pharmacology of SHIP1 inhibition while monitoring cell health. Physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties were evaluated to select a compound suitable for in vivo studies. RESULTS: SHIP1 inhibitors displayed a remarkable array of activities and cellular pharmacology. Inhibitory potency was dependent on the protein construct used to assess enzymatic activity. Some inhibitors failed to engage the target in cells. Inhibitors that were active in the CETSA consistently destabilized the protein and reduced pAKT levels. Many SHIP1 inhibitors were cytotoxic either at high concentration due to cell stress or they potently induced cell death depending on the compound and cell type. One compound activated microglia, inducing phagocytosis at concentrations that did not result in significant cell death. A pharmacokinetic study demonstrated brain exposures in mice upon oral administration. DISCUSSION: 3-((2,4-Dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine activated primary mouse microglia and demonstrated exposures in mouse brain upon oral dosing. Although this compound is our recommended chemical probe for investigating the pharmacology of SHIP1 inhibition at this time, further optimization is required for clinical studies. Highlights: Cellular thermal shift assay (CETSA) and signaling (pAKT) assays were developed to provide evidence of src homology 2 (SH2) domain-contaning inositol phosphatase 1 (SHIP1) target engagement and on-target activity in cellular assays.A phenotypic high-content imaging assay with simultaneous measures of phagocytosis, cell number, and nuclear intensity was developed to explore cellular pharmacology and monitor cell health.SHIP1 inhibitors demonstrate a wide range of activity and cellular pharmacology, and many reported inhibitors are cytotoxic.The chemical probe 3-((2,4-dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine is recommended to explore SHIP1 pharmacology.

7.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836790

RESUMO

Src homology 2 domain-containing phosphatase 2 (SHP2) is an attractive target for cancer therapy due to its multifaceted roles in both tumor and immune cells. Herein, we designed and synthesized a novel series of proteolysis targeting chimeras (PROTACs) using a SHP2 allosteric inhibitor as warhead, with the goal of achieving SHP2 degradation both inside the cell and in vivo. Among these molecules, compound P9 induces efficient degradation of SHP2 (DC50 = 35.2 ± 1.5 nM) in a concentration- and time-dependent manner. Mechanistic investigation illustrates that the P9-mediated SHP2 degradation requires the recruitment of the E3 ligase and is ubiquitination- and proteasome-dependent. P9 shows improved anti-tumor activity in a number of cancer cell lines over its parent allosteric inhibitor. Importantly, administration of P9 leads to a nearly complete tumor regression in a xenograft mouse model, as a result of robust SHP2 depletion and suppression of phospho-ERK1/2 in the tumor. Hence, P9 represents the first SHP2 PROTAC molecule with excellent in vivo efficacy. It is anticipated that P9 could serve not only as a new chemical tool to interrogate SHP2 biology but also as a starting point for the development of novel therapeutics targeting SHP2.


Assuntos
Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Humanos , Animais , Camundongos , Neoplasias/tratamento farmacológico , Linhagem Celular , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteólise
8.
Front Oncol ; 13: 1185466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671050

RESUMO

Background: As a result of the COVID-19 pandemic, patients with glioblastoma (GBM) are considered a highly vulnerable population. Despite this, the extent of the causative relationship between GBM and COVID-19 infection is uncertain. Methods: Genetic instruments for SARS-CoV-2 infection (38,984 cases and 1,644,784 control individuals), COVID-19 hospitalization (8,316 cases and 1,549,095 control individuals), and COVID-19 severity (4,792 cases and 1,054,664 control individuals) were obtained from a genome-wide association study (GWAS) from European populations. A total of 6,183 GBM cases and 18,169 controls from GWAS were enrolled in our study. Their associations were evaluated by applying Mendelian randomization (MR) including IVW meta-analysis, MR-Egger regression, and weighted-median analysis. To make the conclusions more robust and reliable, sensitivity analyses were performed. Results: Our results showed that genetically predicted COVID-19 hospitalization increases the risk of GBM (OR = 1.202, 95% CI = 1.035-1.395, p = 0.016). In addition, no increased risk of SARS-CoV-2 infection, COVID-19 hospitalization and severity were observed in patients with any type of genetically predicted GBM. Conclusion: Our MR study indicated for the first time that genetically predicted COVID-19 hospitalization was demonstrated as a risk factor for the development of GBM.

9.
Transl Cancer Res ; 12(8): 1992-2007, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37701108

RESUMO

Background: High-grade bladder cancer (HGBC) has a higher malignant potential, recurrence and progression rate compared to low-grade phenotype. Its early symptoms are often vague, making non-invasive diagnosis using urinary biomarkers a promising approach. Methods: The gene expression data from urine samples of patients with HGBC was extracted from the GSE68020 dataset. The clinical information and gene expression data in tumor tissues of HGBC patients were obtained from The Cancer Genome Atlas (TCGA) database. Multivariate Cox analysis was used to predict the optimal risk model. The protein-protein interaction (PPI) analysis was performed via the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized using Cytoscape. Overall survival (OS) was evaluated in the Gene Expression Profiling Interactive Analysis (GEPIA) online platform. Competing endogenous RNA (ceRNA) network was also visualized using Cytoscape. The expression levels of specific genes were assessed through quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Moreover, co-expressed genes and potential biological functions related to specific genes were explored based on the Cancer Cell Line Encyclopedia (CCLE) database. Results: A total of 560 differentially expressed genes (DEGs) were identified when comparing the urine sediment samples from HGBC patients with the benign ones. Using these urinary DEGs and the clinical information of HGBC patients, we developed an optimal risk model consisting of eight genes to predict the patient outcome. By integrating the node degree values in the PPI network with the expression changes in both urine and tissue samples, eighteen hub genes were selected out. Among them, DKC1 and SNRPG had the most prominent comprehensive values, and EFTUD2, LOR and EBNA1BP2 were relevant to a worse OS in bladder cancer patients. The ceRNA network of hub genes indicated that DKC1 may be directly regulated by miR-150 in HGBC. The upregulation of both SNRPG and DKC1 were detected in HGBC cells, which were also observed in various tumor tissues and malignant cell lines, displaying high correlations with other hub genes. Conclusions: Our study may provide theoretical basis for the development of effective non-invasive detection and treatment strategies, and further research is necessary to explore the clinical applications of these findings.

10.
BMC Med Educ ; 23(1): 670, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723452

RESUMO

BACKGROUND: The purpose of this study was to explore the applicability of application effect of head-mounted mixed reality (MR) equipment combined with a three-dimensional (3D) printed model in neurosurgical ventricular and haematoma puncture training. METHODS: Digital Imaging and Communications in Medicine (DICOM) format image data of two patients with common neurosurgical diseases (hydrocephalus and basal ganglia haemorrhage) were imported into 3D Slicer software for 3D reconstruction, saved, and printed using 3D printing to produce a 1:1-sized head model with real person characteristics. The required model (brain ventricle, haematoma, puncture path, etc.) was constructed and imported into the head-mounted MR device, HoloLens, and a risk-free, visual, and repeatable system was designed for the training of junior physicians. A total of 16 junior physicians who studied under this specialty from September 2020 to March 2022 were selected as the research participants, and the applicability of the equipment and model during training was evaluated with assessment score sheets and questionnaires after training. RESULTS: According to results of the assessment and questionnaire, the doctors trained by this system are more familiar with the localization of the lateral anterior ventricle horn puncture and the common endoscopic surgery for basal ganglia haemorrhage, as well as more confident in the mastery of these two operations than the traditional training methods. CONCLUSIONS: The use of head-mounted MR equipment combined with 3D printing models can provide an ideal platform for the operation training of young doctors. Through holographic images created from the combination of virtual and real images, operators can be better immersed in the operation process and deepen their understanding of the operation and related anatomical structures. The 3D printed model can be repeatedly reproduced so that doctors can master the technology, learn from mistakes, better achieve the purpose of teaching and training, and improve the effect of training.


Assuntos
Realidade Aumentada , Hemorragia dos Gânglios da Base , Neurocirurgia , Humanos , Punções , Impressão Tridimensional , Hematoma
11.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37397992

RESUMO

The inhibition of protein tyrosine phosphatases (PTPs), such as PTP1B and PTPN2 that function as intracellular checkpoints, has emerged as an exciting new approach for bolstering T cell anti-tumor immunity to combat cancer. ABBV-CLS-484 is a dual PTP1B and PTPN2 inhibitor currently in clinical trials for solid tumors. Here we have explored the therapeutic potential of targeting PTP1B and PTPN2 with a related small molecule inhibitor, Compound 182. We demonstrate that Compound 182 is a highly potent and selective active site competitive inhibitor of PTP1B and PTPN2 that enhances antigen-induced T cell activation and expansion ex vivo and represses the growth of syngeneic tumors in C57BL/6 mice without promoting overt immune-related toxicities. Compound 182 repressed the growth of immunogenic MC38 colorectal and AT3-OVA mammary tumors as well as immunologically cold AT3 mammary tumors that are largely devoid of T cells. Treatment with Compound 182 increased both the infiltration and activation of T cells, as well as the recruitment of NK cells and B cells that promote anti-tumor immunity. The enhanced anti-tumor immunity in immunogenic AT3-OVA tumors could be ascribed largely to the inhibition of PTP1B/PTPN2 in T cells, whereas in cold AT3 tumors, Compound 182 elicited both direct effects on tumor cells and T cells to facilitate T cell recruitment and thereon activation. Importantly, treatment with Compound 182 rendered otherwise resistant AT3 tumors sensitive to anti-PD1 therapy. Our findings establish the potential for small molecule active site inhibitors of PTP1B and PTPN2 to enhance anti-tumor immunity and combat cancer.

12.
Nat Commun ; 14(1): 4524, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500611

RESUMO

The inhibition of protein tyrosine phosphatases 1B (PTP1B) and N2 (PTPN2) has emerged as an exciting approach for bolstering T cell anti-tumor immunity. ABBV-CLS-484 is a PTP1B/PTPN2 inhibitor in clinical trials for solid tumors. Here we have explored the therapeutic potential of a related small-molecule-inhibitor, Compound-182. We demonstrate that Compound-182 is a highly potent and selective active site competitive inhibitor of PTP1B and PTPN2 that enhances T cell recruitment and activation and represses the growth of tumors in mice, without promoting overt immune-related toxicities. The enhanced anti-tumor immunity in immunogenic tumors can be ascribed to the inhibition of PTP1B/PTPN2 in T cells, whereas in cold tumors, Compound-182 elicited direct effects on both tumor cells and T cells. Importantly, treatment with Compound-182 rendered otherwise resistant tumors sensitive to α-PD-1 therapy. Our findings establish the potential for small molecule inhibitors of PTP1B and PTPN2 to enhance anti-tumor immunity and combat cancer.


Assuntos
Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Camundongos , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Monoéster Fosfórico Hidrolases , Neoplasias/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Linfócitos T/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
13.
Angew Chem Int Ed Engl ; 62(22): e202303818, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36973833

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TC-PTP) play non-redundant negative regulatory roles in T-cell activation, tumor antigen presentation, insulin and leptin signaling, and are potential targets for several therapeutic applications. Here, we report the development of a highly potent and selective small molecule degrader DU-14 for both PTP1B and TC-PTP. DU-14 mediated PTP1B and TC-PTP degradation requires both target protein(s) and VHL E3 ligase engagement and is also ubiquitination- and proteasome-dependent. DU-14 enhances IFN-γ induced JAK1/2-STAT1 pathway activation and promotes MHC-I expression in tumor cells. DU-14 also activates CD8+ T-cells and augments STAT1 and STAT5 phosphorylation. Importantly, DU-14 induces PTP1B and TC-PTP degradation in vivo and suppresses MC38 syngeneic tumor growth. The results indicate that DU-14, as the first PTP1B and TC-PTP dual degrader, merits further development for treating cancer and other indications.


Assuntos
Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/tratamento farmacológico , Fosforilação , Imunoterapia
14.
Microbiol Spectr ; : e0358122, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847543

RESUMO

Chronic infections caused by polymicrobial biofilms are often difficult to treat effectively, partially due to the elevated tolerance of polymicrobial biofilms to antimicrobial treatments. It is known that interspecific interactions influence polymicrobial biofilm formation. However, the underlying role of the coexistence of bacterial species in polymicrobial biofilm formation is not fully understood. Here, we investigated the effect of the coexistence of Enterococcus faecalis, Escherichia coli O157:H7, and Salmonella enteritidis on triple-species biofilm formation. Our results demonstrated that the coexistence of these three species enhanced the biofilm biomass and led to restructuring of the biofilm into a tower-like architecture. Furthermore, the proportions of polysaccharides, proteins, and eDNAs in the extracellular matrix (ECM) composition of the triple-species biofilm were significantly changed compared to those in the E. faecalis mono-species biofilm. Finally, we analyzed the transcriptomic profile of E. faecalis in response to coexistence with E. coli and S. enteritidis in the triple-species biofilm. The results suggested that E. faecalis established dominance and restructured the triple-species biofilm by enhancing nutrient transport and biosynthesis of amino acids, upregulating central carbon metabolism, manipulating the microenvironment through "biological weapons," and activating versatile stress response regulators. Together, the results of this pilot study reveal the nature of E. faecalis-harboring triple-species biofilms with a static biofilm model and provide novel insights for further understanding interspecies interactions and the clinical treatment of polymicrobial biofilms. IMPORTANCE Bacterial biofilms possess distinct community properties that affect various aspects of our daily lives. In particular, biofilms exhibit increased tolerance to chemical disinfectants, antimicrobial agents, and host immune responses. Multispecies biofilms are undoubtedly the dominant form of biofilms in nature. Thus, there is a pressing need for more research directed at delineating the nature of multispecies biofilms and the effects of the properties on the development and survival of the biofilm community. Here, we address the effects of the coexistence of Enterococcus faecalis, Escherichia coli, and Salmonella enteritidis on triple-species biofilm formation with a static model. In combination with transcriptomic analyses, this pilot study explores the potential underlying mechanisms that lead to the dominance of E. faecalis in triple-species biofilms. Our findings provide novel insights into the nature of triple-species biofilms and indicate that the composition of multispecies biofilms should be a key consideration when determining antimicrobial treatments.

15.
Bioact Mater ; 22: 168-179, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36203959

RESUMO

Dynamic regulation of cell-extracellular matrix (ECM)-material interactions is crucial for various biomedical applications. In this study, a light-activated molecular switch for the modulation of cell attachment/detachment behaviors was established on monolayer graphene (Gr)/n-type Silicon substrates (Gr/Si). Initiated by light illumination at the Gr/Si interface, pre-adsorbed proteins (bovine serum albumin, ECM proteins collagen-1, and fibronectin) underwent protonation to achieve negative charge transfer to Gr films (n-doping) through π-π interactions. This n-doping process stimulated the conformational switches of ECM proteins. The structural alterations in these ECM interactors significantly reduced the specificity of the cell surface receptor-ligand interaction (e.g., integrin recognition), leading to dynamic regulation of cell adhesion and eventual cell detachment. RNA-sequencing results revealed that the detached bone marrow mesenchymal stromal cell sheets from the Gr/Si system manifested regulated immunoregulatory properties and enhanced osteogenic differentiation, implying their potential application in bone tissue regeneration. This work not only provides a fast and feasible method for controllable cells/cell sheets harvesting but also gives new insights into the understanding of cell-ECM-material communications.

16.
Drug Resist Updat ; 66: 100907, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527888

RESUMO

The binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory. This review begins with the description of biological structure of the PD-1/PD-L1 immune checkpoint and its role in a variety of cells. Subsequently, the therapeutic effects of immune checkpoint blockers (PD-1 / PD-L1 inhibitors) in various tumors were introduced and analyzed, and the reasons affecting the function of PD-1/PD-L1 were systematically analyzed. Then, we focused on analyzing, sorting out and introducing the possible underlying mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade including abnormal expression of PD-1/PD-L1 and some factors, immune-related pathways, tumor immune microenvironment, and T cell dysfunction and others. Finally, promising therapeutic strategies to sensitize the resistant patients with PD-1/PD-L1 blockade treatment were described. This review is aimed at providing guidance for the treatment of various tumors, and highlighting the drug resistance mechanisms to offer directions for future tumor treatment and improvement of patient prognosis.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-H1 , Resistência a Medicamentos , Imunoterapia , Microambiente Tumoral
17.
Eur J Pharmacol ; 938: 175444, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462734

RESUMO

Temozolomide (TMZ) is the recommended drug for glioblastoma (GBM) treatment, but its clinical effect is restricted due to drug resistance. This research studies the effects of long non-coding RNA (lncRNA) ZBED3-AS1 and its related molecules on acquired TMZ resistance in glioblastoma (GBM). ZBED3-AS1 was identified to be downregulated in TMZ-resistant GBM cells by analyzing GSE113510 and GSE100736 datasets. ZBED3-AS1 downregulation was detected in TMZ-resistant GBM tissues and cell lines (U251/TMZ and U87/TMZ). ZBED3-AS1 knockdown promoted, whereas its overexpression suppressed TMZ resistance, viability and mobility, and glycolytic activity of TMZ-resistant cells. ZBED3-AS1 bound to Spi-1 proto-oncogene (SPI1) but did not affect its expression. Instead, it blocked SPI1-mediated transcriptional activation of thrombomodulin (THBD). SPI1 and THBD increased TMZ resistance and glycolysis in TMZ-resistant cells. Either ZBED3-AS1 overexpression or SPI1 knockdown in U87/TMZ cells blocked the growth of orthotopic and subcutaneous xenograft tumors in nude mice. In conclusion, this study demonstrates that ZBED3-AS1 downregulation and THBD activation is linked to increased TMZ resistance and glycolysis in GBM cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , RNA Longo não Codificante , Camundongos , Animais , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , RNA Longo não Codificante/metabolismo , Regulação para Baixo , Camundongos Nus , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proliferação de Células , Glicólise , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
18.
Zhonghua Nan Ke Xue ; 29(12): 986-991, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38639950

RESUMO

OBJECTIVE: To explore the effect of a novel transurethral thulium laser vapoenucleation of the prostate with low-power conventional pulse mode (LP-ThuVEP) on sexual function in patients with benign prostatic hyperplasia (BPH). METHODS: 89 BPH patients admitted to Department of Urology, Jintan People's Hospital, Affiliated to Jiangsu University, from January 2022 to June 2023 were selected and randomly divided into the LP-ThuLEP group (45 cases) and the transurethral plasma kinetic resection of the prostate (TUPKRP) group (44 cases). Perioperative indicators were recorded, and the IPSS, Qmax, Qavg, PVR, and QoL of the two groups of patients before surgery and 3 months and 6 months after surgery were comparatively analyzed. The effect of surgery on male sexual function was evaluated through the International Index of Erectile Function-5 (IIEF-5) score and the Male Sexual Health Questionnaire-Ejaculatory Dysfunction (MSHQ-EjD) score. RESULTS: Compared with the TUPKRP group, the LP-ThuVEP group had no statistically significant difference in operation time (P>0.05), but there were statistical differences in bladder irrigation time and indwelling urinary catheter time (P<0.05) and significant statistical differences in the decrease in hemoglobin on the day of surgery and the disappearance time of gross hematuria induced by defecation after surgery (P<0.001). The perioperative complications of the two groups were comparable. Among the urinary tract symptom indicators, the LP-ThuVEP group had statistically significant differences in IPSS score, QoL score, and PVR compared with the TUPKRP group 3 months after surgery (P<0.05). In terms of male sexual function, there was a statistical difference in IIEF-5 scores between the two groups at 3 months and 6 months after surgery (P<0.05); Except that there was no statistical difference in the ejaculation-related satisfaction scores between the two groups at 3 months after surgery (P>0.05), there had all significant statistical differences in ejaculation function and satisfaction scores between and within the groups at 3 months and 6 months after surgery (P<0.001). CONCLUSION: Compared with TUPKRP, the LP-ThuVEP can also effectively relieve urinary tract obstruction caused by BPH and has the advantages of less damage and faster recovery of erectile function and ejaculatory function of patients.


Assuntos
Disfunção Erétil , Terapia a Laser , Hiperplasia Prostática , Ressecção Transuretral da Próstata , Humanos , Masculino , Próstata/cirurgia , Hiperplasia Prostática/cirurgia , Disfunção Erétil/cirurgia , Qualidade de Vida , Resultado do Tratamento
19.
Ann Transplant ; 27: e937469, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36176185

RESUMO

BACKGROUND Cordyceps cicadae is beneficial in treating renal diseases, especially in inhibiting renal ischemia/reperfusion injury (IRI). The aim of this study was to systematically analyze and predict the potential mechanism of Cordyceps cicadae in renal IRI therapy using network pharmacology. MATERIAL AND METHODS Cordycepin, adenosine, and cordycepic acid are the 3 major medicinal ingredients in Cordyceps cicadae. Based on network pharmacology, the 3D structure of the 3 compounds were obtained, and then the common targets between these compounds and renal IRI were analyzed and determined. We used the ingredient-target (I-T), protein-protein interaction (PPI) networks, the enrichment analysis of Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) to find the possible pharmacological mechanism of Cordyceps cicadae in treating renal IRI. RESULTS Through target fishing and analysis, the 3 active ingredients of Cordyceps cicadae shared 81 target genes with renal IRI. I-T network showed that adenosine had the highest degree, and 5 genes were associated with the 3 active ingredients. PPI network analysis showed that ALB, GAPDH, CASP3, MAPK1, FN1, and IL-10 play a pivotal role. The enrichment analysis of GO and KEGG showed that Cordyceps cicadae can treat renal IRI through MAPK, cAMP, PPAR, Rap1, and HIF-1 signaling pathways. CONCLUSIONS Cordyceps cicadae exerts its therapeutic effect on renal IRI via multiple targets and pathways. Nevertheless, further experimentation is needed to verify this. The method of network pharmacology provides an effective method of determining the comprehensive action mechanism of Traditional Chinese Medicine (TCM).


Assuntos
Interleucina-10 , Nefropatias , Adenosina/farmacologia , Adenosina/uso terapêutico , Caspase 3 , Cordyceps , Humanos , Isquemia , Farmacologia em Rede , Receptores Ativados por Proliferador de Peroxissomo , Reperfusão
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121723, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964353

RESUMO

Studying the stimuli-responsive properties of luminescent materials is important for their applications, while the luminescent materials studied up to now usually exhibit emission quenching and red shift in photoluminescence (PL) energy upon compression. Designing luminescent material with abnormal pressure responses remains challenging. Here, we report the discovery of abnormal luminescent properties of FCO-CzS upon compression. A theoretical study on the excited state decay process has been carried out for FCO-CzS at high pressure by hybrid quantum mechanics/molecular mechanics (QM/MM). A significant emission enhancement and blue shift are observed as pressure increases up to 20 GPa. This is opposite to the pressure response behaviours reported for other luminescent materials. It is further revealed that both the unique molecular configuration and the electronic structure change contribute to the anomalous pressure-responsive emission of FCO-CzS, which reduces the non-radiative rate and increases the radiative rate, respectively. Our study provides a strategy for the design of luminescent materials with desired pressure responses.


Assuntos
Luminescência , Simulação de Dinâmica Molecular , Eletrônica , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...